Preaver Geschrieben 20. Februar 2013 Geschrieben 20. Februar 2013 Heyho, ich könnte da mal etwas Hilfe gebrauchen... Würde gerne fürs Spotten im Voraus berechnen können welche Brennweite ich immer brauche. Besonders im Anflug oder fürs Knipsen auf die Bahn natürlich sehr interessant, wenn man es darauf anlegt, dass das AC auch bei 90° noch genau ins Bild passen sollte. Und man dann nicht das falsche Objektiv drauf hat und man etwas abschneidet. Den Abstand zur Bahnlinie (auf Grund) kann man ja relativ problemlos herausfinden und die Höhe in der die AC an diesem Punkt ebenfalls. Satz des Pythagoras anwenden und ich habe den relevanten Abstand durch die Luft. Länge der AC lassen sich auch problemlos herausfinden, dazu dann etwas Toleranz hinzuaddieren, damit es nicht zu knapp im Bild ist und jetzt müsste man doch die Brennweite berechnen können. Nur jetzt weiß ich nicht weiter, wie ich die errechnete Brennweite dann in die "real einstellbare" am Objektiv umrechne. Jemand der mir dabei helfen kann? :-) Zitieren
airpic Geschrieben 20. Februar 2013 Geschrieben 20. Februar 2013 Hallo Jan Das Stichwort heisst "Bildwinkel". Für den Bildwinkel gilt die folgende Formel: Bildwinkel = 2 arctan(d/2f) Wobei d die Sensordiagonale und f die Brennweite ist. Hilft dies? Gruss Christoph Zitieren
Ueli Zwingli Geschrieben 20. Februar 2013 Geschrieben 20. Februar 2013 (...) wie ich die errechnete Brennweite dann in die "real einstellbare" am Objektiv umrechne.Beachte aber, dass das Flugzeug schon lange vorbei ist wenn du fertig gerechnet hast! :D :005: :005: :005: Zitieren
Preaver Geschrieben 20. Februar 2013 Autor Geschrieben 20. Februar 2013 Also muss es über den Bildwinkel gehen, damit hatte ich mich bisher noch nie befasst, mal schauen... :-) Für die Sensordiagonale meiner 600D habe ich per Google 26,8mm herausgefunden. Um also eine Brennweite berechnen zu können muss die Formel ja erstmal umgestellt werden: Da hab ich dann f = d / (2 tan [alpha/2]) Soweit so gut, nur wie bekomme ich alpha raus, also den Bildwinkel? Ich versuche es mir mal zu erdenken. Angenommen das AC + Toleranz ist 40m lang und 200m von meinem Standort entfernt. Anhand dessen kann ich ja alpha/2 auch direkt berechnen, da ein Dreieck gebildet wird. Über simple Trigonometrie (Gegenkathete / Ankathete) habe ich dann: tan (alpha/2) = 20m / 200m => alpha/2 = 5.7106 Dann oben einsetzen: => f = 133.9998mm. Oder auch 134mm. Kommt meine Rechnung hin? Sind diese 134mm jetzt auch die, die ich am Objektiv hinschiebe, oder muss ich da noch Cropfaktor bedenken? Sollte die Berechnung hinkommen ist die Vereinfachte Formel für die Brennweiten Berechnung ja so: f = d / (l * x), wobei l die Länge des AC und x die Entfernung ist. Das klingt dann aber wieder viel zu einfach... damit käme ich aber ebenfalls auf die 134mm. Beachte aber, dass das Flugzeug schon lange vorbei ist wenn du fertig gerechnet hast! :D :005: :005: :005: Na, wenns jetzt so einfach ist wie oben dann geht das sogar. :-D Aber ist natürlich als Vorbereitungsmaßnahme gedacht. Zitieren
airpic Geschrieben 21. Februar 2013 Geschrieben 21. Februar 2013 Hallo Jan Ich komme auch auf das gleiche Ergebnis. Allerdings gibt es noch ein kleines Problem. Gemäss deinen Berechnungen hast du das Flugzeug bildfüllend in der Diagonalen fotografiert. Nun nehme ich aber an, dass du das Flugzeug lieber horizontal im Bild haben möchtest. Das heisst, du musst vom Bildwinkel (der oft auch als diagonaler Bildwinkel bezeichnet wird), zum horizontalen Bildwinkel umrechnen. Dieser ist kleiner wie der diagonale. Zu deiner Anschlussfrage wegen des Crops - nein, den hast du bereits über die Länge der Sensordiagonale berücksichtigt. Gruss Christoph Zitieren
Preaver Geschrieben 21. Februar 2013 Autor Geschrieben 21. Februar 2013 Das ist doch auch praktisch so... :-D Macht natürlich Sinn was du sagst. Im Grund muss ich aber doch dann einfach nur die Länge des Flugzeugs auf die Diagonale übertragen. Beim 3:2 Bildformat kenne ich dann ja Breite und Höhe des Bilds und damit ist die Diagonale leicht zu errechnen. Bei unseren 40m bedeutet das eine Bildhöhe von 26,67m und damit eine Diagonale von ~48,07m. Das lässt sich sogar noch einfach direkt aus der Flugzeuglänge berechnen, da wir beim Dreieck, welches die Diagonale mit der Breite und Höhe des Bildes bildet, einen Winkel von 33,69° zwischen Breite und Diagonale haben. Somit ist dann die Diagonale immer: y = l / cos(33.69) = 1.2018 * l Mit der neuen Diagonalen von 48,07m komme ich dann auf ein Ergebnis.. Btw. in meiner Formel oben war natürlich ein Fehler, es müsste heißen: f = d / (l / x) = d * x / l Wenn ich da jetzt statt l das y = 48,07m einsetze kriege ich 111.50mm Brennweite heraus. Klingt sinnvoll oder? Im Grund ließe sich die Formel am Ende dann so darstellen: f = d * x / (1.2018 * l) Das ließe sich sogar noch weiter vereinfachen, da d ja auch eine Konstante ist. Beachte muss man natürlich, dass d kameraspezifisch ist, für Canon wäre es dann: => f = 22.3 * x / l Mit diesem Tool hier: http://www.vd-pixel.de/distanzrechner.php (wurde vor ein paar Jahren hier im Forum gepostet) komme ich auf ein Ergebnis, was meine Rechnung bestätigt. Nur muss man da als Bildformat Hochformat auswählen und die Länge des AC dann eben als Höhe des Objekts. Gebe ich da 111.5mm ein errechnet mir das Tool eine Distanz von 201m, also nur 1m mehr als unsere 200m. Glaube dann haben wir es jetzt oder? :-) Die Endformel wäre dann ja jetzt recht einfach und super praktisch. Zitieren
Ueli Zwingli Geschrieben 22. Februar 2013 Geschrieben 22. Februar 2013 Glaube dann haben wir es jetzt oder? :-) Nein nein, du hast vergessen, dass das Bildobjekt nicht bis ganz zum Bildrand gehen darf. Da sollten doch mindestens 3,5 Pixel Abstand sein, besser wären 5,75 Pixel, damit das Bild auch ästhetischen Ansprüchen genügt. ;) Zitieren
Preaver Geschrieben 22. Februar 2013 Autor Geschrieben 22. Februar 2013 Ich versuche es mir mal zu erdenken. Angenommen das AC + Toleranz ist 40m lang [...] Alles schon bedacht. :-) Zitieren
Empfohlene Beiträge
Dein Kommentar
Du kannst jetzt schreiben und Dich später registrieren. Wenn Du ein Konto hast, melde Dich jetzt an, um unter Deinem Benutzernamen zu schreiben.